Равновесие в модели Курно достигается за счет того, что каждый из конкурентов меняет свой объем выпуска в ответ на изменение выпуска другого до тех пор, пока такие изменения увеличивают их прибыль. В модели Штакельберга предполагается, что один из дуополистов выступает в роли лидера, а другой — в роли аутсайдера. Лидер всегда первым принимает решение об объеме своего выпуска, а аутсайдер воспринимает выпуск лидера в качестве экзогенного параметра. В этом случае равновесные объемы выпуска определяются не в результате решения системы уравнений реакции дуополистов, а на основе максимизации прибыли лидера, в формуле которой вместо выпуска аутсайдера находится уравнение его реакции. Определим равновесие Штакельберга в условиях примера Z.
Если лидером является фирма А, то ее выпуск определяется из равенства MRa = МСа. Общая выручка фирмы А с учетом уравнения реакции фирмы В равна: TRa = = Pqa = [100 - 0.5(qa + 50 - 0.25qa)]qa = 75qa - 0.375 qa^2; тогда MRa = 75 - 0.75qa. Следовательно, прибыль фирмы А будет максимальной при 75 - 0.75qa = 1.5qa. Отсюда qa = 33.33; qь = 50 - 0.25 * 33.33 = 41.66; P = 100 - 0.5(33.33 + 41.66) = 62.5; pa = 62.5 * 33.3 - 20 - 0.75*33.3^2 = 1230; pb = 62.5*41.7 - 30 - 0.5 * 41.7^2 = 1707.
Рис. 11 Линия реакции и
изопрофиты |
Таким образом, в результате пассивного поведения фирмы В ее прибыль снизилась, а фирмы А возросла. Если бы фирмы поменялись ролями, то прибыль фирмы А равнялась бы 1189, а фирмы В — 1747.8.
Для наглядного сопоставления равновесия Курно с равновесием Штакельберга линии реакции дуополистов нужно дополнить линиями равной прибыли (изопрофитами). Уравнение изопрофиты образуется в результате решения уравнения прибыли дуополии относительно ее выпуска при заданной величине прибыли. По данным примера 4.7 на рис. 4.32 построены изопрофиты и линия реакции фирмы А. Чем ниже расположена изопрофита, тем большему размеру прибыли она соответствует, так как ее приближение к оси абсцисс соответствует росту qa и уменьшению qb.
Наложив на рис. 11 аналогичный рисунок для фирмы В, получим рис. 12, на котором равновесие Курно отмечено точкой С, а равновесие Штакельберга точкой Sa при лидерстве фирмы А и точкой Sb при лидерстве фирмы В.
Картель.
Однако наибольшие прибыли олигополисты получат в случае организации картеля — явного или скрытого сговора о распределении объема выпуска с целью поддержания монопольной цены на данном рынке. В условиях рассматриваемого числового примера суммарная прибыль участников картеля определяется по формуле
p
å
= [100 -
0.5(
q
A
+
q
B
)]
(q
A
+
q
B
)
- 20 - 0.75q
A
^
2 - 30 - 0.5q
B
^
2 =
100
q
A
+
100q
B
-
q
A
q
B
- - 1.25q
A
^2 - q
B
^2
- 50.
Рис. 12. Равновесие Курно и
равновесие Штакельберга. |
Перейти на страницу: 1 2 3
|